Arc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory
نویسندگان
چکیده
Arc/Arg3.1 is an effector immediate-early gene implicated in the consolidation of memories. Although cloned a decade ago, the physiological role of Arc/Arg3.1 in the brain has remained elusive. Four papers in this issue of Neuron address this function. These studies show that Arc/Arg3.1 regulates endophilin 3 and dynamin 2, two components of the endocytosis machinery. Genetic ablation of Arc/Arg3.1 in mice or overexpression in culture suggest that Arc/Arg3.1 regulates AMPA receptor trafficking and synaptic plasticity. Finally, Arc/Arg3.1 knockout mice show memory retention deficits. These recent developments provide new insights into the function of this popular activity-dependent neuronal marker.
منابع مشابه
Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking
Arc/Arg3.1 is an immediate-early gene whose mRNA is rapidly transcribed and targeted to dendrites of neurons as they engage in information processing and storage. Moreover, Arc/Arg3.1 is known to be required for durable forms of synaptic plasticity and learning. Despite these intriguing links to plasticity, Arc/Arg3.1's molecular function remains enigmatic. Here, we demonstrate that Arc/Arg3.1 ...
متن کاملExpression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference.
Activity-regulated cytoskeleton-associated protein (Arc), also known as activity-regulated gene 3.1 (Arg3.1), is an immediate early gene whose mRNA is selectively targeted to recently activated synaptic sites, where it is translated and enriched. This unique feature suggests a role for Arc/Arg3.1 in coupling synaptic activity to protein synthesis, leading to synaptic plasticity. Although the Ar...
متن کاملActivity-Induced Notch Signaling in Neurons Requires Arc/Arg3.1 and Is Essential for Synaptic Plasticity in Hippocampal Networks
Notch signaling in the nervous system has been most studied in the context of cell fate specification. However, numerous studies have suggested that Notch also regulates neuronal morphology, synaptic plasticity, learning, and memory. Here we show that Notch1 and its ligand Jagged1 are present at the synapse, and that Notch signaling in neurons occurs in response to synaptic activity. In additio...
متن کاملArc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors
Homeostatic plasticity may compensate for Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), by scaling neuronal output without changing the relative strength of individual synapses. This delicate balance between neuronal output and distributed synaptic weight may be necessary for maintaining efficient encoding of information across neuronal network...
متن کاملArg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation.
Long-term potentiation (LTP) is a cellular model for persistent synaptic plasticity in the mammalian brain. Like several forms of memory, long-lasting LTP requires cAMP-mediated activation of protein kinase A (PKA) and is dependent on gene transcription. Consequently, activity-dependent genes such as c-fos that contain cAMP response elements (CREs) in their 5' regulatory region have been studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 52 شماره
صفحات -
تاریخ انتشار 2006